Kinetic Model of Nav1.5 Channel Provides a Subtle Insight into Slow Inactivation Associated Excitability in Cardiac Cells
نویسندگان
چکیده
Voltage-gated sodium channel Nav1.5 has been linked to the cardiac cell excitability and a variety of arrhythmic syndromes including long QT, Brugada, and conduction abnormalities. Nav1.5 exhibits a slow inactivation, corresponding to a duration-dependent bi-exponential recovery, which is often associated with various arrhythmia syndromes. However, the gating mechanism of Nav1.5 and the physiological role of slow inactivation in cardiac cells remain elusive. Here a 12-state two-step inactivation Markov model was successfully developed to depict the gating kinetics of Nav1.5. This model can simulate the Nav1.5 channel in not only steady state processes, but also various transient processes. Compared with the simpler 8-state model, this 12-state model is well-behaved in simulating and explaining the processes of slow inactivation and slow recovery. This model provides a good framework for further studying the gating mechanism and physiological role of sodium channel in excitable cells.
منابع مشابه
Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation
Cardiac voltage-gated sodium channels (Nav1.5) play an essential role in regulating cardiac electric activity by initiating and propagating action potentials in the heart. Altered Nav1.5 function is associated with multiple cardiac diseases including long-QT3 and Brugada syndrome. Here, we show that Nav1.5 is subject to palmitoylation, a reversible post-translational lipid modification. Palmito...
متن کاملComparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine
Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Nav1.5 and Nav1.7 channels stably expressed in HEK293 cells and compared their use-de...
متن کاملAcidosis Differentially Modulates Inactivation in NaV1.2, NaV1.4, and NaV1.5 Channels
Na(V) channels play a crucial role in neuronal and muscle excitability. Using whole-cell recordings we studied effects of low extracellular pH on the biophysical properties of Na(V)1.2, Na(V)1.4, and Na(V)1.5, expressed in cultured mammalian cells. Low pH produced different effects on different channel subtypes. Whereas Na(V)1.4 exhibited very low sensitivity to acidosis, primarily limited to p...
متن کاملState-dependent mibefradil block of Na+ channels.
Mibefradil is a T-type Ca2+ channel antagonist with reported cross-reactivity with other classes of ion channels, including K+, Cl-, and Na+ channels. Using whole-cell voltage clamp, we examined mibefradil block of four Na+ channel isoforms expressed in human embryonic kidney cells: Nav1.5 (cardiac), Nav1.4 (skeletal muscle), Nav1.2 (brain), and Nav1.7 (peripheral nerve). Mibefradil blocked Nav...
متن کاملUsing fluorescence to understand β subunit–NaV channel interactions
The human voltage-gated sodium channel NaV1.5 plays a critical role in the human heart, in which it generates inward sodium currents that underlie cardiomyocyte depolarization. The NaV1.5 protein is composed of more than 2,000 amino acids, organized into four homologous domains (Catterall et al., 2017), which equip the channel with one central pore domain and four peripheral voltage sensor doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013